APPROVED JURISDICTIONAL DETERMINATION FORM
U.S. Army Corps of Engineers

This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): February 1, 2016
C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: Indiana
 County/parish/borough: Martin
 City: Crane
 Center coordinates of site (lat/long in degree decimal format): Lat. 38.8179 °N, Long. 86.8820 °W
 Universal Transverse Mercator: 4296583.76, 510236.90
 Name of nearest waterbody: UNT to First Creek
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: East Fork White River
 Name of watershed or Hydrologic Unit Code (HUC): 05120202
 ☑ Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 ☑ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc....) are associated with this action and are recorded on a different JD form

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 ☑ Office (Desk) Determination. Date: February 23, 2016
 ☑ Field Determination. Date(s): May 12, 2015, Click here to enter a date.

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
 There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area.
 [Required]
 ☑ Waters subject to the ebb and flow of the tide.
 ☑ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
 Explain: Click here to enter text.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
 There are no “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

 1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 ☑ TNWs, including territorial seas
 ☑ Wetlands adjacent to TNWs
 ☑ Relatively permanent waters2 (RPWs) that flow directly or indirectly into TNWs
 ☑ Non-RPWs that flow directly or indirectly into TNWs
 ☑ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☑ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☑ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☑ Impoundments of jurisdictional waters
 ☑ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: # linear feet; # width (ft) and/or 0.203 acres (WB-002-001).
 Wetlands: WW-002-002A – 0.01 acres.
 ☑ Limits (boundaries) of jurisdiction based on: Choose an item.
 Elevation of established OHWM (if known): Click here to enter text.
 c. Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: Click here to enter text.

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section IIIF.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1, only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1; otherwise, see Section III.B below.

1. TNW
 Identify TNW: Click here to enter text.
 Summarize rationale supporting determination: Click here to enter text.

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is "adjacent": Click here to enter text.

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e., tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW
 (i) General Area Conditions:
 Watershed size: 1,297,833 acres
 Drainage area: 4.73 acres
 Average annual rainfall: 43 inches
 Average annual snowfall: 25 inches
 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 Tributary flows directly into TNW.
 Tributary flows through Choose an item, tributaries before entering TNW.
 Project waters are Choose an item, river miles from TNW.
 Project waters are Choose an item, river miles from RPW.
 Project waters are Choose an item, aerial (straight) miles from TNW.
 Project waters are Choose an item, aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: Click here to enter text.
 Idtify flow route to TNW: Click here to enter text.
 Tributary stream order, if known: Click here to enter text.
 (b) General Tributary Characteristics (check all that apply):
 Tributary is:
 Natural
 Artificial (man-made). Explain: Click here to enter text.
 Manipulated (man-altered). Explain: Click here to enter text.

4 Note that the instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
Tributary properties with respect to top of bank (estimate):
Average width: # feet
Average depth: # feet
Average side slopes: Choose an item.

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Cobbles
- Gravel
- Muck
- Bedrock
- Vegetation. Type/cover: Click here to enter text.
- Other. Explain: Click here to enter text.

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Click here to enter text.
Presence of run/riffle/pool complexes. Explain: Click here to enter text.
Tributary geometry: Choose an item.
Tributary gradient (approximate average slope): #%

(c) Flow:
Tributary provides for: Choose an item.
Estimate average number of flow events in review area/year: Choose an item.
Describe flow regime: Click here to enter text.
Other information on duration and volume: Click here to enter text.
Surface flow is: Choose an item. Characteristics: Click here to enter text.
Subsurface flow: Choose an item. Explain findings: Click here to enter text.
- Dye (or other) test performed: Click here to enter text.

Tributary has (check all that apply):
- Bed and banks
- OHWM⁶ (check all indicators that apply):
 - clear, natural line impressed on the bank
 - changes in the character of soil
 - shelving
 - vegetation matted down, bent, or absent
 - leaf litter disturbed or washed away
 - sediment deposition
 - water staining
 - other (list): Click here to enter text.
- Discontinuous OHWM.⁷ Explain: Click here to enter text.

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- High Tide Line indicated by:
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - tidal gauges
 - other (list): Click here to enter text.

(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).
Explain: Click here to enter text.
Identify specific pollutants, if known: Click here to enter text.

⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

⁷Ibid.

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian corridor. Characteristics (type, average width): Click here to enter text.
- Wetland fringe. Characteristics: Click here to enter text.
- Habitat for:
 - Federally Listed species. Explain findings: Click here to enter text.
 - Fish/spawn areas. Explain findings: Click here to enter text.
 - Other environmentally-sensitive species. Explain findings: Click here to enter text.
 - Aquatic/wildlife diversity. Explain findings: Click here to enter text.

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics:
- Properties:
 - Wetland size: 0.01 acres
 - Wetland type. Explain: Emergent Wetland
 - Wetland quality. Explain: Emergent wetland located on the fringe of open water pond
 - Project wetlands cross or serve as state boundaries. Explain: Click here to enter text.

(b) General Flow Relationship with Non-TNW:
- Flow is: Intermittent Flow Explain: The wetland abuts an open water impounded stream that discharges to an unnamed tributary to Frist Creek
- Surface flow is: Confined
 - Characteristics: Water flows between wetland and open water, impounded stream.
- Subsurface flow: Unknown Explain findings: Click here to enter text.
- Dye (or other) test performed: Click here to enter text.

(c) Wetland Adjacency Determination with Non-TNW:
- Directly abutting Wetland directly abuts and impounded stream that connects to an unnamed tributary to First Creek
- Not directly abutting
 - Discrete wetland hydrologic connection. Explain: Click here to enter text.
 - Ecological connection. Explain: Click here to enter text.
 - Separated by berm/barrier. Explain: Click here to enter text.

(d) Proximity (Relationship) to TNW:
- Project wetlands are 15-20 river miles from TNW.
- Project waters are 5-10 aerial (straight) miles from TNW.
- Flow is from: Wetland to Navigable Waters
- Estimate approximate location of wetland as within the 500-year or greater floodplain.

(ii) Chemical Characteristics:
- Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: Water was clear during site visit
- Identify specific pollutants, if known: Nitrogen and phosphorus from fertilizer runoff from golf course

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian buffer. Characteristics (type, average width): Click here to enter text.
- Vegetation type/percent cover. Explain: Click here to enter text.
- Habitat for:
 - Federally Listed species. Explain findings: Click here to enter text.
 - Fish/spawn areas. Explain findings: Click here to enter text.
 - Other environmentally-sensitive species. Explain findings: Click here to enter text.
 - Aquatic/wildlife diversity. Explain findings: Habitat for amphibians, reptiles, and mammals

3. Characteristics of all wetlands adjacent to the tributary (if any)
- All wetland(s) being considered in the cumulative analysis: 1
- Approximately (0.01) acres in total are being considered in the cumulative analysis.

For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW-002-002a</td>
<td>Yes</td>
<td>0.01</td>
<td>Y/N</td>
</tr>
<tr>
<td>Y/N</td>
<td></td>
<td>#</td>
<td>Y/N</td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: Wetland provides habitat for wildlife, serves as a filter for runoff from golf course, and holds water during flood events

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: Click here to enter text.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: The wetland has a direct hydrologic connection as it abuts impoundment WB-002-001, and impounded unnamed tributary to First Creek, which then connects to the White River. The wetland provide storm water detention, provide filtration for golf course runoff, filtration, and are capable of transporting flood waters and nutrients to the downstream foodwebs and the White River.

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Click here to enter text.

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: # linear feet # width (ft), Or, # acres.
 - Wetlands adjacent to TNWs: # acres.

2. RPWs that flow directly or indirectly into TNWs.
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Click here to enter text.
 - Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: Click here to enter text.

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: # linear feet # width (ft).
 - Other non-wetland waters: # acres.
 - Identify type(s) of waters: Click here to enter text.

3. Non-RPWs\(^8\) that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional waters within the review area (check all that apply):
 - Tributary waters: \# linear feet \# width (ft).
 - Other non-wetland waters: \# acres.
 - Identify type(s) of waters: [Click here to enter text].

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abutting RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: [Click here to enter text].
 - Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: [Click here to enter text].

 Provide acreage estimates for jurisdictional wetlands in the review area: \# acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetlands in the review area: \# acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
 - Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional wetlands in the review area: 0.01 acres.

7. Impoundments of jurisdictional waters.\(^9\)
 - As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 - Demonstrate that impoundment was created from “waters of the U.S.,” or
 - Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 - Demonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):\(^10\)
 - which are or could be used by interstate or foreign travelers for recreational or other purposes.
 - from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
 - which are or could be used for industrial purposes by industries in interstate commerce.
 - Interstate isolated waters. Explain: [Click here to enter text].
 - Other factors. Explain: [Click here to enter text].

Identify water body and summarize rationale supporting determination: [Click here to enter text].

Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: \# linear feet \# width (ft).
 - Other non-wetland waters: \# acres.
 - Identify type(s) of waters: [Click here to enter text].
 - Wetlands: \# acres.

\(^8\)See Footnote # 3.
\(^9\)To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
\(^10\)Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.

- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.

- Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).

- Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Click here to enter text.

- Other: (explain, if not covered above): Click here to enter text.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non-wetland waters (i.e., rivers, streams): # linear feet # width (ft).

- Lakes/ponds: # acres.

- Other non-wetland waters: # acres. List type of aquatic resource: Click here to enter text.

- Wetlands: # acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters (i.e., rivers, streams): # linear feet # width (ft).

- Lakes/ponds: # acres.

- Other non-wetland waters: # acres. List type of aquatic resource: Click here to enter text.

- Wetlands: # acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply) - checked items shall be included in case file and, where checked and requested, appropriately reference sources below:

- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Waters Determination Report

- Data sheets prepared/submitted by or on behalf of the applicant/consultant.

- Office concurs with data sheets/delineation report.

- Office does not concur with data sheets/delineation report.

- Data sheets prepared by the Corps: Click here to enter text.

- Corps navigable waters' study: Click here to enter text.

- U.S. Geological Survey Hydrologic Atlas: Click here to enter text.

- USGS NHD data.

- USGS 8 and 12 digit HUC maps.

- U.S. Geological Survey map(s). Cite scale & quad name: 1:24K Odon Quad

- USDA Natural Resources Conservation Service Soil Survey. Citation: Soil Survey of Martin County, Indiana, September 1988, page 8

- National wetlands inventory map(s). Cite name: Odon Quad

- State/Local wetland inventory map(s): Click here to enter text.

- FEMA/FIRM maps: Click here to enter text.

- 100-year Floodplain Elevation is: Click here to enter text. (National Geodetic Vertical Datum of 1929)

- Photographs: Aerial (Name & Date): Data provided in Waters Determination Report

- or Other (Name & Date): Waters Determination Report

- Previous determination(s). File no. and date of response letter: Click here to enter text.

- Applicable/supporting case law: Click here to enter text.

- Applicable/supporting scientific literature: Click here to enter text.

- Other information (please specify): Click here to enter text.

B. ADDITIONAL COMMENTS TO SUPPORT JD: Open water WB-002-001 is an impounded stream constructed from an unnamed tributary to First Creek, as depicted in the Martin County Soil Survey Book of 1988, page 8. The unnamed tributary is located outside the review area.
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): February 1, 2016

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

State: Indiana County/parish/borough: Martin County City: Cran
Center coordinates of site (lat/long in degree decimal format): Lat. 38.8179 °N, Long. 86.8820 °W
Universal Transverse Mercator: 2496583.76, 510236.90
Name of nearest waterbody: Seed Tick Creek
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: East Fork White River
Name of watershed or Hydrologic Unit Code (HUC): 05120208

☐ Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
☐ Check if other sites (e.g., onsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

☐ Office (Desk) Determination. Date: February 23, 2016
☐ Field Determination. Date(s): May 12, 2015, Click here to enter a date.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

Explain: Click here to enter text.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): ¹

☐ TNWs, including territorial seas
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs
☐ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area:

 Non-wetland waters: SS-002-002 – 642 feet, SS-002-003 - 384 linear feet; 3 width (ft) and/or WB-002-003 -- 0.52 acres, WB-002-004 -- 1.96 acres, WB-002-005 - 1.63 acres.

 Wetlands: WW-002-004 – 0.02, WW-002-005A – 0.73 acres, WW-002-006 – 0.24 acres, WW-002-005C – 0.06 acres, WW-002-010A – 0.03 acres, WW-002-010B 0.13 acres, WW-002-005B – 0.43 acres.

c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual

 Elevation of established OHWM (if known): Click here to enter text.

¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below.
² For purposes of this form, a RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).

2. Non-regulated waters/wetlands (check if applicable):[^3]
 - Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional.

 Explain: [Click here to enter text.]

[^3] Supporting documentation is presented in Section III.F.

SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1; otherwise, see Section III.B below.

1. TNW

 Identify TNW: Click here to enter text.
 Summarize rationale supporting determination: Click here to enter text.

2. Wetland adjacent to TNW

 Summarize rationale supporting conclusion that wetland is “adjacent”: Click here to enter text.

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e., tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: 1,297,000 acres
 Drainage area: 29.47 acres
 Average annual rainfall: 43 inches
 Average annual snowfall: 25 inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 ☒ Tributary flows directly into TNW.
 ☐ Tributary flows through 3 tributaries before entering TNW.

 Project waters are 10-15 river miles from TNW.
 Project waters are 1 (or less) river miles from RPW.
 Project waters are 5-10 aerial (straight) miles from TNW.
 Project waters are 1 (or less) aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: Click here to enter text.

 Identify flow route to TNW: Each unnamed tributary flows into Seed Tick Creek, which then flows into Boggs Creek which then flows into East Fork White River
 Tributary stream order, if known: Click here to enter text.

 (b) General Tributary Characteristics (check all that apply):
 Tributary is:
 ☒ Natural
 ☐ Artificial (man-made). Explain: Click here to enter text.
 ☒ Manipulated (man-altered). Explain: Tributaries have been alternated and manipulated by golf course operations

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.

5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

Tributary properties with respect to top of bank (estimate):

Average width: 3 feet
Average depth: 1.5 feet
Average side slopes: 2:1

Primary tributary substrate composition (check all that apply):

- ✔ Silts
- ✔ Cobbles
- □ Bedrock
- □ Other. Explain: Click here to enter text.
- □ Sands
- ✔ Gravel
- □ Vegetation. Type/% cover:
- □ Concrete
- □ Muck

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: highly eroding due to golf course impacts, impacts and construction of impoundments

Presence of run/riffle/pool complexes. Explain: Click here to enter text.

Tributary geometry: Meandering
Tributary gradient (approximate average slope): 3%

(c) Flow:
Tributary provides for: Intermittent but not Seasonal Flow
Estimate average number of flow events in review area/year: 11-20
Describe flow regime: Water flows from runoff from the golf course, discharges from the ponds and from the wetlands, to Seed Tick Creek, to Boggs Creek, to East Fork White River
Other information on duration and volume: Click here to enter text.

Surface flow is: Confined Characteristics: Water flows within channel
Subsurface flow: Unknown Explain findings: Click here to enter text.

- □ Dye (or other) test performed: Click here to enter text.

Tributary has (check all that apply):
- ✔ Bed and banks
- ✔ OHWM\(^6\) (check all indicators that apply):
 - ✔ clear, natural line impressed on the bank
 - □ changes in the character of soil
 - □ shelving
 - □ vegetation matted down, bent, or absent
 - □ leaf litter disturbed or washed away
 - □ sediment deposition
 - □ water staining
 - □ other (list): Click here to enter text.
- □ the presence of litter and debris
- □ destruction of terrestrial vegetation
- □ the presence of wrack line
- □ sediment sorting
- □ scour
- □ multiple observed or predicted flow events
- □ abrupt change in plant community Click here to enter text.

- □ Discontinuous OHWM.\(^7\) Explain: Click here to enter text.

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):

- □ High Tide Line indicated by:
- □ oil or scum line along shore objects
- □ fine shell or debris deposits (foreshore)
- □ physical markings/characteristics
- □ tidal gauges
- □ other (list): Click here to enter text.
- □ Mean High Water Mark indicated by:
- □ survey to available datum;
- □ physical markings;
- □ vegetation lines/changes in vegetation types.

(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).

Explain: water was clear during site visit on May 12, 2015
Identify specific pollutants, if known: Nitrogen and phosphorus from adjacent golf course, oils and debris from adjacent roadway

\(^6\)A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

\(^7\)bid.

-4-
(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian corridor. Characteristics (type, average width): Click here to enter text.
- Wetland fringe. Characteristics: Click here to enter text.
- Habitat for:
 - Federally Listed species. Explain findings: Click here to enter text.
 - Fish/spawn areas. Explain findings: Click here to enter text.
 - Other environmentally-sensitive species. Explain findings: Click here to enter text.
- Aquatic/wildlife diversity. Explain findings: Support macro-invertebrates, amphibians, reptiles and mammals

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:
Properties:
- Wetland size: WW-002-004 – 0.02, WW-002-005A – 0.73 acres, WW-002-006 – 0.24 acres, WW-002-005C – 0.06 acres,
 WW-002-010A – 0.03 acres, WW-002-010B 0.13 acres, WW-002-005B – 0.43 acres acres
- Wetland type. Explain: Emergent and Scrub Shrub
- Wetland quality. Explain: Wetlands are disturbed and typically moved due to golf course operations
- Project wetlands cross or serve as state boundaries. Explain: Click here to enter text.

(b) General Flow Relationship with Non-TNW:
Flow is: Ephemeral Flow Explain: Wetlands flow to Non-TNW adjacent streams during rain events
Surface flow is: Overland Sheetflow
Characteristics: Click here to enter text.
- Subsurface flow: Unknown Explain findings: Click here to enter text.
- Dye (or other) test performed: Click here to enter text.

(c) Wetland Adjacency Determination with Non-TNW:
- Directly abutting WW-002-005A directly abutting SS-002-002. WW-002-010B and WW-002-005B are directly abutting SS-002-003
- Not directly abutting
- Discrete wetland hydrologic connection. Explain: WW-002-006 is directly abutting WB-002-003 an impounded stream that overland sheet flows to WB-002-004 another impoundment and then discharges to SS-002-002
 WW-002-005C overland sheet flows through a man-made drainage feature labeled DR-002-005 into SS-002-002
 WW-002-010A overland sheet flows to WW-002-010B, which is directly abutting SS-002-003.
- Ecological connection. Explain: Click here to enter text.
- Separated by berm/barrier. Explain: Click here to enter text.

(d) Proximity (Relationship) to TNW
Project wetlands are 10-15 river miles from TNW.
Project waters are 5-10 aerial (straight) miles from TNW.
Flow is from: Wetland to Navigable Waters
Estimate approximate location of wetland as within the 500-year or greater floodplain.

(ii) Chemical Characteristics:
Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: water was clear during May 12, 2015 inspection
Identify specific pollutants, if known: Nitrogen and phosphorus from adjacent golf course, oils and debris from adjacent roadway

(iii) Biological Characteristics. Wetland supports (check all that apply):
- Riparian buffer. Characteristics (type, average width): Click here to enter text.
- Vegetation type/percent cover. Explain: Click here to enter text.
- Habitat for:
 - Federally Listed species. Explain findings: Click here to enter text.
 - Fish/spawn areas. Explain findings: Click here to enter text.
 - Other environmentally-sensitive species. Explain findings: Click here to enter text.
- Aquatic/wildlife diversity. Explain findings: Habitat for amphibians, reptiles, mammals
3. Characteristics of all wetlands adjacent to the tributary (if any)
 All wetland(s) being considered in the cumulative analysis: 7
 Approximately (1.64) acres in total are being considered in the cumulative analysis. For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW-002-004</td>
<td>No</td>
<td>0.02</td>
<td>WW-002-010A</td>
</tr>
<tr>
<td>WW-002-005A</td>
<td>Yes</td>
<td>0.73</td>
<td>WW-002-010B</td>
</tr>
<tr>
<td>WW-002-006</td>
<td>Yes</td>
<td>0.24</td>
<td>WW-002-005B</td>
</tr>
<tr>
<td>WW-002-005C</td>
<td>No</td>
<td>0.06</td>
<td></td>
</tr>
</tbody>
</table>

 Summarize overall biological, chemical and physical functions being performed: Wetland provides habitat for wildlife, serves as a filter for runoff from golf course, and holds water during flood events.

C. SIGNIFICANT NEXUS DETERMINATION

 A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

 Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
 - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
 - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
 - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
 - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

 Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: Click here to enter text.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: There is direct hydrologic connection where water flows from the wetlands, through the two tributaries to Seed Tick Creek, which eventually drains into Seed Tick Creek, then to Boggs Creek which drains to the East Fork of the White River. The wetlands provide storm water detention, provide filtration for golf course runoff, filtration, and are capable of transporting flood waters and nutrients to the downstream foodwebs and the East Fork of the White River.

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Click here to enter text.

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: # linear feet # width (ft), Or, # acres.
 - Wetlands adjacent to TNWs: # acres.

2. RPWs that flow directly or indirectly into TNWs.
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Click here to enter text.
 - Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: Click here to enter text.

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: # linear feet # width (ft).

3. Non-RPWs that flow directly or indirectly into TNWs.
 □ Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):
 □ Other non-wetland waters: WB-002-003 – 0.52 acres, WB-002-004 – 1.96 acres, WB-002-005-1.63 acres. acres.

Identify type(s) of waters: Impounded open water bodies

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 □ Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.
 □ Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Click here to enter text.
 □ Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Click here to enter text.

Provide acreage estimates for jurisdictional wetlands in the review area: # acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
 □ Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
 □ Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: WW-002-004 – 0.02, WW-002-005A – 0.73 acres, WW-002-006 – 0.24 acres, WW-002-005C – 0.06 acres, WW-002-010A – 0.03 acres, WW-002-010B 0.13 acres, WW-002-005B – 0.43 acres. acres.

7. Impoundments of jurisdictional waters.9
 As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 □ Demonstrate that impoundment was created from “waters of the U.S.” or
 □ Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 □ Demonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):10
 □ which are or could be used by interstate or foreign travelers for recreational or other purposes.
 □ from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
 □ which are or could be used for industrial purposes by industries in interstate commerce.
 □ Interstate isolated waters. Explain: Click here to enter text.
 □ Other factors. Explain: Click here to enter text.

Identify water body and summarize rationale supporting determination: Click here to enter text.

Provide estimates for jurisdictional waters in the review area (check all that apply):
 □ Tributary waters: # linear feet # width (ft).
 □ Other non-wetland waters: # acres.

Identify type(s) of waters: Click here to enter text.

9See Footnote # 3.
10To complete the analysis refer to the key in Section III.D.6 of the Instructual Guidebook.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated wetlands with no substantial nexus to interstate (or foreign) commerce.
- Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).
- Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Click here to enter text.
- Other: (explain, if not covered above): Click here to enter text.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non-wetland waters (i.e., rivers, streams): # linear feet # width (ft).
- Lakes/ponds: # acres.
- Other non-wetland waters: # acres. List type of aquatic resource: Click here to enter text.
- Wetlands: # acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters (i.e., rivers, streams): # linear feet # width (ft).
- Lakes/ponds: # acres.
- Other non-wetland waters: # acres. List type of aquatic resource: Click here to enter text.
- Wetlands: # acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Waters Determination Report
- Data sheets prepared/submitted by or on behalf of the applicant/consultant.
 - Office concurs with data sheets/delineation report.
 - Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps: Click here to enter text.
- Corps navigable waters' study: Click here to enter text.
- U.S. Geological Survey Hydrologic Atlas: Click here to enter text.
- USGS NHD data.
- USGS 8 and 12 digit HUC maps.
- U.S. Geological Survey map(s). Cite scale & quad name: 1:24k, Odon Quad
- USDA Natural Resources Conservation Service Soil Survey. Citation: Soil Survey of Martin County, Indiana, September 1988, page 8 & 12
- National wetlands inventory map(s). Cite name: Odon Quad
- State/Local wetland inventory map(s): Click here to enter text.
- FEMA/FIRM maps: Click here to enter text.
- 100-year Floodplain Elevation is: Click here to enter text. (National Geodetic Vertical Datum of 1929)
- Photographs: Aerial (Name & Date): Data provided in Waters Determination Report
 - or Other (Name & Date): Data provided in Waters Determination Report
- Previous determination(s). File no. and date of response letter: Click here to enter text.
- Applicable/supporting case law: Click here to enter text.
- Applicable/supporting scientific literature: Click here to enter text.
- Other information (please specify): Click here to enter text.

B. ADDITIONAL COMMENTS TO SUPPORT JD: Click here to enter text.
Scott A. Matthews
Regulatory Specialist

February 25, 2016
Date

GAM 3/8/16

-9-
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): February 6, 2016

C. PROJECT LOCATION AND BACKGROUND INFORMATION:

State: Indiana County/parish/borough: Martin City: Crane
Center coordinates of site (lat/long in degree decimal format): Lat. 38.8179 °N, Long. 86.8820 °W
Universal Transverse Mercator: 4296583.76, 510236.90

Name of nearest waterbody: Boggs Creek
Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: East Fork White River
Name of watershed or Hydrologic Unit Code (HUC): 05120208

☑ Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):

☐ Office (Desk) Determination. Date: February 23, 2016
☐ Field Determination. Date(s): May 12, 2015, Click here to enter a date.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.

There are no “Navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]

☐ Waters subject to the ebb and flow of the tide.
☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.

Explain: Click here to enter text.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.

There are “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]

1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): ¹

☐ TNWs, including territorial seas
☐ Wetlands adjacent to TNWs
☐ Relatively permanent waters² (RPWs) that flow directly or indirectly into TNWs
☑ Non-RPWs that flow directly or indirectly into TNWs
☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
☐ Impoundments of jurisdictional waters
☐ Isolated (interstate or intrastate) waters, including isolated wetlands

b. Identify (estimate) size of waters of the U.S. in the review area:

Non-wetland waters: SS-001-001 – 250 ft, SS-001-002 – 288 feet, SS-002-001 – 499 feet, SS-001-006 – 114 feet, SS-001-005 – 149 feet, SS-001-004 – 31 linear feet; Each stream approximately 2 feet in width (ft) and/or 0.01 acres (WB-002-006 open water feature).
Wetlands: WW-002-001A – 0.06 acres, WW-001-014 – 0.16 acres, WW-001-001- 0.16 acres WW-001-002 – 0.77 acres WW-001-004 – 0.40 acres, WW-002-001C – 0.44, WW-002-001D – 0.28 acres.

 c. Limits (boundaries) of jurisdiction based on: 1987 Delineation Manual

Elevation of established OHWM (if known): Click here to enter text.

¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below.
² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).

-1-
2. Non-regulated waters/wetlands (check if applicable):³

[] Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional.

Explain: Click here to enter text.
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1; otherwise, see Section III.B below.

1. TNW
 Identify TNW: Click here to enter text.
 Summarize rationale supporting determination: Click here to enter text.

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”: Click here to enter text.

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody4 is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: 1,297,000 acres
 Drainage area: 61.34 acres
 Average annual rainfall: 43 inches
 Average annual snowfall: 25 inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 ☑ Tributary flows directly into TNW.
 ☑ Tributary flows through 3 tributaries before entering TNW.

 Project waters are 10-15 river miles from TNW.
 Project waters are 1 (or less) river miles from RPW.
 Project waters are 5-10 aerial (straight) miles from TNW.
 Project waters are 1 (or less) aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: Click here to enter text.

 Identify flow route to TNW5: SS-002-001 and S-001-002 flow into SS-001-001; SS-001-005, SS-001-004 and SS-001-006 flow into SS-001-003, which is located just outside delineated area. SS-001-001 and SS-001-003 merge offsite to become an unnamed tributary to Boggs Creek, which flows into Boggs Creek, which flows into the East Fork of White River Tributary stream order, if known: unknown

 (b) General Tributary Characteristics (check all that apply):
 Tributary is: ☑ Natural
 ☑ Artificial (man-made). Explain: Click here to enter text.
 ☑ Manipulated (man-altered). Explain: Click here to enter text.

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.

5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

Tributary properties with respect to top of bank (estimate):
Average width: 2 feet
Average depth: 0.5 feet
Average side slopes: Choose an item.

Primary tributary substrate composition (check all that apply):
☑ Silts ☑ Sands ☐ Concrete
☐ Cobbles ☑ Gravel ☐ Muck
☐ Bedrock ☑ Vegetation. Type/% cover: Click here to enter text.
☐ Other. Explain: Click here to enter text.

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Click here to enter text.
Presence of run/riffle/pool complexes. Explain: Click here to enter text.
Tributary geometry: Meandering
Tributary gradient (approximate average slope): 3%

(c) Flow:
Tributary provides for: Ephemeral flow
Estimate average number of flow events in review area/year: 20 (or greater)
Describe flow regime: Surface water flows from the wetlands to ephemeral channels to Boggs Creek to East Fork White River, a TNW
Other information on duration and volume: Water flows through streams during short rain events and while water is discharging from the wetlands.

Surface flow is: Confined Characteristics: Water is confined to ephemeral channels
Subsurface flow: Unknown Explain findings: Click here to enter text.
☐ Dye (or other) test performed: Click here to enter text.

Tributary has (check all that apply):
☑ Bed and banks
☑ OHWM6 (check all indicators that apply):
☑ clear, natural line impressed on the bank ☑ the presence of litter and debris
☑ changes in the character of soil ☑ destruction of terrestrial vegetation
☑ shelving ☑ the presence of wrack line
☑ vegetation matted down, bent, or absent ☑ sediment sorting
☑ leaf litter disturbed or washed away ☑ scour
☑ sediment deposition ☐ multiple observed or predicted flow events
☑ water staining ☑ abrupt change in plant community Click here to enter text.
☑ other (list): Click here to enter text.
☐ Discontinuous OHWM? Explain: Click here to enter text.

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
☐ High Tide Line indicated by:
☐ Mean High Water Mark indicated by:
☐ oil or scum line along shore objects ☑ survey to available datum;
☐ fine shell or debris deposits (foreshore) ☑ physical markings;
☐ physical markings/characteristics ☑ vegetation lines/changes in vegetation types.
☐ tidal gauges
☐ other (list): Click here to enter text.

(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).
Explain: water was clear during site visit on May 12, 2015
Identify specific pollutants, if known: Nitrogen and phosphorus from adjacent golf course, oils and debris from adjacent roadway.

6A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

7Bid.

(iv) Biological Characteristics. Channel supports (check all that apply):

- Riparian corridor. Characteristics (type, average width): Located within a forested corridor
- Wetland fringe. Characteristics: [Click here to enter text].

- Habitat for:
 - Federally Listed species. Explain findings: [Click here to enter text].
 - Fish/spawn areas. Explain findings: [Click here to enter text].
 - Other environmentally-sensitive species. Explain findings: [Click here to enter text].
- Aquatic/wildlife diversity. Explain findings: Support macro-invertebrates, amphibians, reptiles and mammals.

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:

(a) General Wetland Characteristics:
- Properties:
 - Wetland size: WW-002-001A - 0.06 acres, WW-001-014 - 0.16 acres, WW-001-001 - 0.16 acres, WW-001-002 - 0.77 acres, WW-001-004 - 0.40 acres, WW-002-001C - 0.44, WW-002-001D - 0.28 acres
 - Wetland type: Emergent and Scrub/shrub
 - Wetland quality: Explain: Wetlands are characterized as emergent wetlands, adjacent to forested areas that have been impacted by mowing operations.
- Project wetlands cross or serve as state boundaries. Explain: [Click here to enter text].

(b) General Flow Relationship with Non-TNW:
- Flow is: Ephemeral Flow Explain: Wetlands flow to Non-TNW adjacent streams during rain events.
- Surface flow is: Overland Sheetflow Explain: [Click here to enter text].
- Subsurface flow: Unknown Explain findings:
 - Dye (or other) test performed: [Click here to enter text].

(c) Wetland Adjacency Determination with Non-TNW:

- Directly abutting WW-001-001 is directly abutting SS-001-001
- Not directly abutting
 - Discrete wetland hydrologic connection. Explain: WW-002-001a is hydrologically connected via a man made ditch labeled DR-002-001A to WW-000-014, which connects to upland drainage DR-001-003 via a culvert under the road, which then connects to SS-001-001.
 - WW-002-001C is hydrologically connected to WW-002-001D via upland surface drainage labeled DR-002-001B, which then flows under the road and into ephemeral channels outside project area that connect to SS-001-003.
 - WW-001-002 is directly connects to WW-001-004, which is hydrologically connected by upland drainage feature DR-001-002 to SS-001-003.
- Ecological connection. Explain: [Click here to enter text].
- Separated by berm/barrier. Explain: [Click here to enter text].

(d) Proximity (Relationship) to TNW
- Project wetlands are 10-15 river miles from TNW.
- Project waters are 5-10 aerial (straight) miles from TNW.
- Flow is from: Wetland to Navigable Waters
- Estimate approximate location of wetland as within the 500-year or greater floodplain.

(ii) Chemical Characteristics:
- Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: water was clear during May 12, 2015 inspection.
- Identify specific pollutants, if known: Nitrogen and phosphorus from adjacent golf course, oils and debris from adjacent roadway.

(iii) Biological Characteristics. Wetland supports (check all that apply):

- Riparian buffer. Characteristics (type, average width): [Click here to enter text].
- Vegetation type/percent cover. Explain: [Click here to enter text].
- Habitat for:
3. Characteristics of all wetlands adjacent to the tributary (if any)
 All wetland(s) being considered in the cumulative analysis: 7
 Approximately (2.27) acres in total are being considered in the cumulative analysis.

 For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WW-001-001</td>
<td>Yes</td>
<td>WW-002-001D</td>
<td>No</td>
</tr>
<tr>
<td>WW-002-001a</td>
<td>No</td>
<td>WW-001-004</td>
<td>No</td>
</tr>
<tr>
<td>WW-001-014</td>
<td>No</td>
<td>WW-001-002</td>
<td>No</td>
</tr>
<tr>
<td>WW-002-001C</td>
<td>No</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

 Summarize overall biological, chemical and physical functions being performed: Wetland provides habitat for wildlife, serves as a filter for runoff from golf course, and holds water during flood events

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

 Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:
 - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
 - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
 - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
 - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

 Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: Click here to enter text.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: There is direct hydrologic connection where water flows from the wetlands, through the three unnamed tributaries to Boggs Creek, which eventually drains into the Boggs Creek which drains to the East Fork of the White River. The wetlands provide storm water detention, provide filtration for golf course runoff, filtration, and are capable of transporting flood waters and nutrients to the downstream foodwebs and the East Fork of the White River.

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Click here to enter text.

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: # linear feet # width (ft), Or, # acres.
 - Wetlands adjacent to TNWs: # acres.

2. RPWs that flow directly or indirectly into TNWs.

Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Click here to enter text.

Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: Click here to enter text.

Provide estimates for jurisdictional waters in the review area (check all that apply):

- Tributary waters: # linear feet / width (ft).
- Other non-wetland waters: # acres.

Identify type(s) of waters: Click here to enter text.

3. Non-RPWs that flow directly or indirectly into TNWs.

Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional waters within the review area (check all that apply):

- Other non-wetland waters: 0.01 acres. WB-002-006 open water feature

Identify type(s) of waters: Click here to enter text.

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.

Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands.

- Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Click here to enter text.

- Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Click here to enter text.

Provide acreage estimates for jurisdictional wetlands in the review area: # acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.

Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide acreage estimates for jurisdictional wetlands in the review area: # acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.

Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

Provide estimates for jurisdictional wetlands in the review area: WW-002-0001A – 0.06 acres, WW-001-014 – 0.16 acres, WW-001-001 – 0.16 acres WW-001-002 – 0.77 acres WW-001-004 – 0.40 acres, WW-002-001C – 0.44, WW-002-001D – 0.28 acres.

7. Impoundments of jurisdictional waters.

As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.

- Demonstrate that impoundment was created from “waters of the U.S.” or
- Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
- Demonstrate that water is isolated with a nexus to commerce (see E below).

8. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY): 19

- which are or could be used by interstate or foreign travelers for recreational or other purposes.
- from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
- which are or could be used for industrial purposes by industries in interstate commerce.
- Interstate isolated waters. Explain: Click here to enter text.
- Other factors. Explain: Click here to enter text.

19See Footnote # 3.

9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.

19 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Raritan.
Identify water body and summarize rationale supporting determination: Click here to enter text.

Provide estimates for jurisdictional waters in the review area (check all that apply):

- Tributary waters: # linear feet # width (ft).
- Other non-wetland waters: # acres.
 Identify type(s) of waters: Click here to enter text.
- Wetlands: # acres.

F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
- Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).
- Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Click here to enter text.
- Other: (explain, if not covered above): Click here to enter text.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

- Non-wetland waters (i.e., rivers, streams): # linear feet # width (ft).
- Lakes/ponds: # acres.
- Other non-wetland waters: # acres. List type of aquatic resource: Click here to enter text.
- Wetlands: # acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):

- Non-wetland waters (i.e., rivers, streams): # linear feet # width (ft).
- Lakes/ponds: # acres.
- Other non-wetland waters: # acres. List type of aquatic resource: Click here to enter text.
- Wetlands: # acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Waters Determination Report
- Data sheets prepared/submitted by or on behalf of the applicant/consultant.
 - Office concurs with data sheets/delineation report.
 - Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps: Click here to enter text.
- Corps navigable waters’ study: Click here to enter text.
- U.S. Geological Survey Hydrologic Atlas: Click here to enter text.
- USGS NHD data.
- USGS 8 and 12 digit HUC maps.
- U.S. Geological Survey map(s). Cite scale & quad name: 1:24k, Odon Quad
- USDA Natural Resources Conservation Service Soil Survey. Citation: Click here to enter text.
- National wetlands inventory map(s). Cite name: Odon Quad
- State/Local wetland inventory map(s); Click here to enter text.
- FEMA/FIRM maps: Click here to enter text.
- 100-year Floodplain Elevation is: Click here to enter text. (National Geodetic Vertical Datum of 1929)
- Photographs: [7] Aerial (Name & Date): Aerials from Water’s report
 or [7] Other (Name & Date): Aerials from Water’s report
- Previous determination(s). File no. and date of response letter: Click here to enter text.
- Applicable/supporting case law: Click here to enter text.
- Applicable/supporting scientific literature: Click here to enter text.

B. ADDITIONAL COMMENTS TO SUPPORT JD: WW-002-001a is hydrologically connected via a man made ditch labeled DR-002-001A to WW-001-014, which connects to upland drainage DR-001-003 via a culvert under the road, which then connects to SS-001-001. WW-002-001C is hydrologically connected to WW-002-001D via upland surface drainage labeled DR-002-001B, which then flows under the road and into ephemeral channels outside project area that connect to SS-001-003.

WW-001-002 is directly connected to WW-001-004, which is hydrologically connected by upland drainage feature DR-001-002 to SS-001-003. SS-002-001 and S-001-002 flow into SS-001-001; SS-001-005, SS-001-004 and SS-001-006 flow into SS-001-003, which is located just outside delineated area. SS-001-001 and SS-001-003 merge offsite to become an unnamed tributary to Boggs Creek, which flows into Boggs Creek, which flows into the East Fork of White River.
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION
A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): February 1, 2016
B. DISTRICT OFFICE, FILE NAME, AND NUMBER: Louisville District, NSA Crane Energy Grid JD, LRL-2015-330-sam, Isolated Wetlands
C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: Indiana County/parish/borough: Martin City: Crane
 Center coordinates of site (lat/long in degree decimal format): Lat. 38.8179 °n, Long. 86.8820 °W
 Universal Transverse Mercator: Click here to enter text.
 Name of nearest waterbody: Boggs Creek
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: None
 Name of watershed or Hydrologic Unit Code (HUC): 05120208
 ☑ Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 ☐ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc...) are associated with this action and are recorded on a different JD form
D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 ☑ Office (Desk) Determination. Date: February 8, 2016
 ☑ Field Determination. Date(s): May 12, 2015, Click here to enter a date.

SECTION II: SUMMARY OF FINDINGS
A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
 There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]
 ☐ Waters subject to the ebb and flow of the tide.
 ☐ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
 Explain: Click here to enter text.
B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
 There are no “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]
 1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply):
 ☐ TNWs, including territorial seas
 ☐ Wetlands adjacent to TNWs
 ☐ Relatively permanent waters (RPWs) that flow directly or indirectly into TNWs
 ☐ Non-RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ☐ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ☐ Impoundments of jurisdictional waters
 ☐ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: # linear feet: # width (ft) and/or # acres.
 Wetlands: # acres.
 c. Limits (boundaries) of jurisdiction based on: Choose an item.
 Elevation of established OHWM (if known): Click here to enter text.
 2. Non-regulated waters/wetlands (check if applicable):
 ☑ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional.

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.
Explain: Thirteen wetlands totaling 2.03 acres were delineated and found to be in natural depressions with no apparent connection to any jurisdictional waters. The isolated wetlands exhibit no hydrologic connection or adjacency to any stream or other "waters of the United States" and are not susceptible to use in interstate or foreign commerce. Wetland acreage includes:

- WW-002-001b – Emergent – 0.03 acres
- WW-002-002b – Emergent – 0.05 acres
- WW-002-003 – Emergent – 0.04 acres
- WW-001-003 – Emergent – 0.39 acres
- WW-001-005 – Emergent – 0.03 acres
- WW-001-006 – Forested – 0.14 acres
- WW-001-007 – Forested – 0.22 acres
- WW-001-008 – Forested – 0.01 acres
- WW-002-009 – Forested – 0.07 acres
- WW-002-007 – Forested – 0.28 acres
- WW-002-008a – Forested – 0.14 acres
- WW-002-008b – Forested – 0.60 acres
- WW-002-008c – Emergent – 0.03 acres
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1.; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below.

1. TNW
 Identify TNW: Click here to enter text.
 Summarize rationale supporting determination: Click here to enter text.

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”: Click here to enter text.

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under Rapanos are met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is a wetland, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: # Choose an item.
 Drainage area: # Choose an item.
 Average annual rainfall: # inches
 Average annual snowfall: # inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 - Tributary flows directly into TNW.
 - Tributary flows through Choose an item. tributaries before entering TNW.
 Project waters are Choose an item. river miles from TNW.
 Project waters are Choose an item. river miles from RPW.
 Project waters are Choose an item. aerial (straight) miles from TNW.
 Project waters are Choose an item. aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: Click here to enter text.
 Identify flow route to TNW: Click here to enter text.
 Tributary stream order, if known: Click here to enter text.

 (b) General Tributary Characteristics (check all that apply):
 Tributary is:
 - Natural
 - Artificial (man-made). Explain: Click here to enter text.
 - Manipulated (man-altered). Explain: Click here to enter text.

4 Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.
5 Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.

Louisville District, NSA Crane Energy Grid JD, LRL-2015-330-sam, Isolated Wetlands
Tributary properties with respect to top of bank (estimate):
Average width: # feet
Average depth: # feet
Average side slopes: Choose an item.

Primary tributary substrate composition (check all that apply):
- Silts
- Sands
- Concrete
- Cobble
- Gravel
- Muck
- Bedrock
- Vegetation. Type/cover: Click here to enter text.
- Other. Explain: Click here to enter text.

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Click here to enter text.
Presence of run/riffle/pool complexes. Explain: Click here to enter text.
Tributary geometry: Choose an item.
Tributary gradient (approximate average slope): #

c) Flow:
Tributary provides for: Choose an item.
Estimate average number of flow events in review area/year: Choose an item.
Describe flow regime: Click here to enter text.
Other information on duration and volume: Click here to enter text.
Surface flow is: Choose an item. Characteristics: Click here to enter text.
Subsurface flow: Choose an item. Explain findings: Click here to enter text.
- Dye (or other) test performed: Click here to enter text.

Tributary has (check all that apply):
- Bed and banks
- OHWM\(^4\) (check all indicators that apply):
 - clear, natural line impressed on the bank
 - the presence of litter and debris
 - changes in the character of soil
 - destruction of terrestrial vegetation
 - shelving
 - the presence of wrack line
 - vegetation matted down, bent, or absent
 - sediment sorting
 - leaf litter disturbed or washed away
 - scour
 - sediment deposition
 - multiple observed or predicted flow events
 - water staining
 - abrupt change in plant community Click here to enter text.
- other (list): Click here to enter text.
- Discontinuous OHWM.\(^7\) Explain: Click here to enter text.

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- High Tide Line indicated by:
- Mean High Water Mark indicated by:
 - oil or scum line along shore objects
 - survey to available datum;
 - fine shell or debris deposits (foreshore)
 - physical markings;
 - physical markings/characteristics
 - vegetation lines/changes in vegetation types.
- tidal gauges
- other (list): Click here to enter text.

(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).
Explain: Click here to enter text.
Identify specific pollutants, if known: Click here to enter text.

\(^4\)A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

\(^7\)Ibid.

Louisville District, NSA Crane Energy Grid JD, LRL-2015-330-sam, Isolated Wetlands
(iv) Biological Characteristics. Channel supports (check all that apply):
- Riparian corridor. Characteristics (type, average width): Click here to enter text.
- Wetland fringe. Characteristics: Click here to enter text.
- Habitat for:
 - Federally Listed species. Explain findings: Click here to enter text.
 - Fish/spawn areas. Explain findings: Click here to enter text.
 - Other environmentally-sensitive species. Explain findings: Click here to enter text.
 - Aquatic/wildlife diversity. Explain findings: Click here to enter text.

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW

(i) Physical Characteristics:
(a) General Wetland Characteristics:
 Properties:
 - Wetland size: # acres
 - Wetland type. Explain: Click here to enter text.
 - Wetland quality. Explain: Click here to enter text.
 Project wetlands cross or serve as state boundaries. Explain: Click here to enter text.

(b) General Flow Relationship with Non-TNW:
 Flow is: Choose an item. Explain: Click here to enter text.
 Surface flow is: Choose an item.
 Characteristics: Click here to enter text.
 Subsurface flow: Choose an item. Explain findings: Click here to enter text.
 - Dye (or other) test performed: Click here to enter text.

(c) Wetland Adjacency Determination with Non-TNW:
 - Directly abutting
 - Not directly abutting
 - Discrete wetland hydrologic connection. Explain: Click here to enter text.
 - Ecological connection. Explain: Click here to enter text.
 - Separated by berm/barrier. Explain: Click here to enter text.

(d) Proximity (Relationship) to TNW
 Project wetlands are Choose an item. river miles from TNW.
 Project waters are Choose an item. aerial (straight) miles from TNW.
 Flow is from: Choose an item.
 Estimate approximate location of wetland as within the Choose an item. floodplain.

(ii) Chemical Characteristics:
 Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: Click here to enter text.
 Identify specific pollutants, if known: Click here to enter text.

(iii) Biological Characteristics. Wetland supports (check all that apply):
 - Riparian buffer. Characteristics (type, average width): Click here to enter text.
 - Vegetation type/percent cover. Explain: Click here to enter text.
 - Habitat for:
 - Federally Listed species. Explain findings: Click here to enter text.
 - Fish/spawn areas. Explain findings: Click here to enter text.
 - Other environmentally-sensitive species. Explain findings: Click here to enter text.
 - Aquatic/wildlife diversity. Explain findings: Click here to enter text.

3. Characteristics of all wetlands adjacent to the tributary (if any)
 All wetland(s) being considered in the cumulative analysis: Choose an item.
 Approximately (9) acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y/N</td>
<td>#</td>
<td>Y/N</td>
<td>#</td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: Click here to enter text.

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the Rapanos Guidance and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: Click here to enter text.

2. Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Click here to enter text.

3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Click here to enter text.

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area:
 - TNWs: # linear feet # width (ft), Or, # acres.
 - Wetlands adjacent to TNWs: # acres.

2. RPWs that flow directly or indirectly into TNWs.
 - Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Click here to enter text.
 - Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: Click here to enter text.

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: # linear feet # width (ft).
 - Other non-wetland waters: # acres.
 - Identify type(s) of waters: Click here to enter text.
3. **Non-RPWs** that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide estimates for jurisdictional waters within the review area (check all that apply):
 - Tributary waters: # linear feet # width (ft).
 - Other non-wetland waters: # acres.
 - Identify type(s) of waters: [Click here to enter text].

4. **Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.**
 - Wetlands directly abutting an RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: [Click here to enter text].
 - Wetlands directly abutting an RPW where tributaries typically flow “seasonally.” Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: [Click here to enter text].
 - Provide acreage estimates for jurisdictional wetlands in the review area: # acres.

5. **Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.**
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide acreage estimates for jurisdictional wetlands in the review area: # acres.

6. **Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.**
 - Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.
 - Provide estimates for jurisdictional wetlands in the review area: # acres.

7. **Impoundments of jurisdictional waters.**
 - As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 - Demonstrate that impoundment was created from “waters of the U.S.”
 - Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 - Demonstrate that water is isolated with a nexus to commerce (see E below).

E. **ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):**
 - Which are or could be used by interstate or foreign travelers for recreational or other purposes.
 - From which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
 - Which are or could be used for industrial purposes by industries in interstate commerce.
 - Interstate isolated waters. Explain: [Click here to enter text].
 - Other factors. Explain: [Click here to enter text].

Identify water body and summarize rationale supporting determination: [Click here to enter text].

Provide estimates for jurisdictional waters in the review area (check all that apply):
- Tributary waters: # linear feet # width (ft).
- Other non-wetland waters: # acres.
- Identify type(s) of waters: [Click here to enter text].
- Wetlands: # acres.

8 See Footnote # 3.
9 To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.
10 Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.

Louisville District, NSA Crane Energy Grid JD, LRL-2015-330-sum, Isolated Wetlands

-7-
F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

☐ If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.

☑ Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.

☑ Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR).

☐ Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Click here to enter text.

☐ Other: (explain, if not covered above): Click here to enter text.

Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):

☐ Non-wetland waters (i.e., rivers, streams): # linear feet # width (ft).

☐ Lakes/ponds: # acres.

☐ Other non-wetland waters: # acres. List type of aquatic resource: Click here to enter text.

☑ Wetlands: 2.03 acres.

Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction (check all that apply):

☐ Non-wetland waters (i.e., rivers, streams): # linear feet # width (ft).

☐ Lakes/ponds: # acres.

☐ Other non-wetland waters: # acres. List type of aquatic resource: Click here to enter text.

☐ Wetlands: # acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):

☐ Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Waters Determination Report

☐ Data sheets prepared/submitted by or on behalf of the applicant/consultant.

☐ Office concurs with data sheets/delineation report.

☐ Office does not concur with data sheets/delineation report.

☐ Data sheets prepared by the Corps: Click here to enter text.

☐ Corps navigable waters' study: Click here to enter text.

☐ U.S. Geological Survey Hydrologic Atlas: Click here to enter text.

☐ USGS NHD data.

☐ USGS 8 and 12 digit HUC maps.

☐ U.S. Geological Survey map(s). Cite scale & quad name: 1:24k, Odon Quad

☐ USDA Natural Resources Conservation Service Soil Survey. Citation: Click here to enter text.

☐ National wetlands inventory map(s). Cite name: Odon Quad

☐ State/Local wetland inventory map(s): Click here to enter text.

☐ FEMA/FIRM maps: Click here to enter text.

☐ 100-year Floodplain Elevation is: Click here to enter text. (National Geodetic Vertical Datum of 1929)

☐ Photographs: ☐ Aerial (Name & Date): Aerials from Water's report

☐ or ☐ Other (Name & Date): Aerials from Water's report

☐ Previous determination(s). File no. and date of response letter: Click here to enter text.

☐ Applicable/supporting case law: Click here to enter text.

☐ Applicable/supporting scientific literature: Click here to enter text.

☐ Other information (please specify): Click here to enter text.

B. ADDITIONAL COMMENTS TO SUPPORT JD: Click here to enter text.
Scott A. Matthews
Regulatory Specialist

February 25, 2016
Date

CAM 3/8/16
This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook.

SECTION I: BACKGROUND INFORMATION

A. REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): February 1, 2016

B. DISTRICT OFFICE, FILE NAME, AND NUMBER: Louisville District, NSA Crane Energy Grid JD, LRL-2015-330-sam, Man-made features

C. PROJECT LOCATION AND BACKGROUND INFORMATION:
 State: Indiana County/parish/borough: Martin City: Crane
 Center coordinates of site (lat/long in degree decimal format): Lat. 38.8179°N, Long. 86.8820°W
 Universal Transverse Mercator: 4296583.76, 510236.90
 Name of nearest waterbody: Boggs Creek
 Name of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: East Fork White River
 Name of watershed or Hydrologic Unit Code (HUC): 05120208
 ✓ Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request.
 ✓ Check if other sites (e.g., offsite mitigation sites, disposal sites, etc…) are associated with this action and are recorded on a different JD form

D. REVIEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY):
 ✓ Office (Desk) Determination. Date: February 23, 2016
 ✓ Field Determination. Date(s): May 12, 2015, Click here to enter a date.

SECTION II: SUMMARY OF FINDINGS

A. RHA SECTION 10 DETERMINATION OF JURISDICTION.
 There are no “navigable waters of the U.S.” within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review area. [Required]
 ✓ Waters subject to the ebb and flow of the tide.
 ✓ Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce.
 Explain: Click here to enter text.

B. CWA SECTION 404 DETERMINATION OF JURISDICTION.
 There are no “waters of the U.S.” within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required]
 1. Waters of the U.S.
 a. Indicate presence of waters of U.S. in review area (check all that apply): 1
 ✓ TNWs, including territorial seas
 ✓ Wetlands adjacent to TNWs
 ✓ Relatively permanent waters2 (RPWs) that flow directly or indirectly into TNWs
 ✓ Non-RPWs that flow directly or indirectly into TNWs
 ✓ Wetlands directly abutting RPWs that flow directly or indirectly into TNWs
 ✓ Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs
 ✓ Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs
 ✓ Impoundments of jurisdictional waters
 ✓ Isolated (interstate or intrastate) waters, including isolated wetlands
 b. Identify (estimate) size of waters of the U.S. in the review area:
 Non-wetland waters: # linear feet: # width (ft) and/or # acres.
 Wetlands: # acres.
 c. Limits (boundaries) of jurisdiction based on: Choose an item.
 Elevation of established OHWM (if known): Click here to enter text.
 2. Non-regulated waters/wetlands (check if applicable): 3
 ✓ Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional.
 Explain: 19 man-made drainage features totaling 5,761 linear feet were identified onsite within the boundaries of the project site. One open water, man-made pond (0.22 acres) was created in uplands draining only uplands. These features are man-made features constructed in

1 Boxes checked below shall be supported by completing the appropriate sections in Section III below.
2 For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least “seasonally” (e.g., typically 3 months).
3 Supporting documentation is presented in Section III.F.

Louisville District, NSA Crane Energy Grid JD, LRL-2015-330-sam, Man-made features

-1-
uplands. They consist of grass waterways road-side ditches, and drainage swales designed to transport water off the golf course. These features do not have perennial flow and are not considered "water's of the U.S."

DR-002-001A – 382lf
DR-002-001B – 2,460lf
DR-002-002 – 478lf
DR-002-003 – 294lf
DR-002-005 – 168lf
DR-002-008 – 30lf
DR-002-009 – 25lf
DR-002-010 – 21lf
DR-002-011 – 10lf
DR-002-012 – 43 lf
DR-002-013 – 93lf
DR-002-014 – 21lf
DR-001-001 – 20lf
DR-001-005 – 3lf
DR-001-016 – 349lf
DR-001-003 – 79 lf
DR-001-009 – 1,285lf
WB-002-002 – 0.22 acres
SECTION III: CWA ANALYSIS

A. TNWs AND WETLANDS ADJACENT TO TNWs

The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.L below.

1. TNW
 Identify TNW: Click here to enter text.
 Summarize rationale supporting determination: Click here to enter text.

2. Wetland adjacent to TNW
 Summarize rationale supporting conclusion that wetland is “adjacent”: Click here to enter text.

B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY):

This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met.

The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are “relatively permanent waters” (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4.

A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law.

If the waterbody\(^4\) is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below.

1. Characteristics of non-TNWs that flow directly or indirectly into TNW

 (i) General Area Conditions:
 Watershed size: # Choose an item.
 Drainage area: # Choose an item.
 Average annual rainfall: # inches
 Average annual snowfall: # inches

 (ii) Physical Characteristics:
 (a) Relationship with TNW:
 Tributary flows directly into TNW.
 Tributary flows through Choose an item. tributaries before entering TNW.
 Project waters are Choose an item. river miles from TNW.
 Project waters are Choose an item. river miles from RPW.
 Project waters are Choose an item. aerial (straight) miles from TNW.
 Project waters are Choose an item. aerial (straight) miles from RPW.
 Project waters cross or serve as state boundaries. Explain: Click here to enter text.
 Identify flow route to TNW\(^5\): Click here to enter text.
 Tributary stream order, if known: Click here to enter text.

 (b) General Tributary Characteristics (check all that apply):
 Tributary is:
 Natural
 Artificial (man-made). Explain: Click here to enter text.
 Manipulated (man-altered). Explain: Click here to enter text.

\(^4\) Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West.

\(^5\) Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW.
Tributary properties with respect to top of bank (estimate):
Average width: # feet
Average depth: # feet
Average side slopes: Choose an item.

Primary tributary substrate composition (check all that apply):
- Slits
- Sands
- Concrete
- Cobbles
- Gravel
- Muck
- Bedrock
- Vegetation. Type/cover: Click here to enter text.
- Other. Explain: Click here to enter text.

Tributary condition/stability [e.g., highly eroding, sloughing banks]. Explain: Click here to enter text.
Presence of run/riffle/pool complexes. Explain: Click here to enter text.
Tributary geometry: Choose an item.
Tributary gradient (approximate average slope): #%

(c) Flow:
Tributary provides for: Choose an item.
Estimate average number of flow events in review area/year: Choose an item.
Describe flow regime: Click here to enter text.
Other information on duration and volume: Click here to enter text.
Surface flow is: Choose an item. Characteristics: Click here to enter text.
Subsurface flow: Choose an item. Explain findings: Click here to enter text.
- Dye (or other) test performed: Click here to enter text.

Tributary has (check all that apply):
- Bed and banks
- OHWM⁶ (check all indicators that apply):
 - clear, natural line impressed on the bank
 - changes in the character of soil
 - shelving
 - vegetation matted down, bent, or absent
 - leaf litter disturbed or washed away
 - sediment deposition
 - water staining
 - other (list): Click here to enter text.
- Discontinuous OHWM⁷. Explain: Click here to enter text.

If factors other than the OHWM were used to determine lateral extent of CWA jurisdiction (check all that apply):
- High Tide Line indicated by:
 - oil or scum line along shore objects
 - fine shell or debris deposits (foreshore)
 - physical markings/characteristics
 - tidal gauges
 - other (list): Click here to enter text.

(iii) Chemical Characteristics:
Characterize tributary (e.g., water color is clear, discolored, oily film; water quality; general watershed characteristics, etc.).
Explain: Click here to enter text.
Identify specific pollutants, if known: Click here to enter text.

⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody’s flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break.

⁷Ibid.

Louisville District, NSA Crane Energy Grid JD, LRL-2015-330-sam, Man-made features
(iv) Biological Characteristics. Channel supports (check all that apply):
 (i) Riparian corridor. Characteristics (type, average width): Click here to enter text.
 (ii) Wetland fringe. Characteristics: Click here to enter text.
 (iii) Habitat for:
 (a) Federally Listed species. Explain findings: Click here to enter text.
 (b) Fish/spawn areas. Explain findings: Click here to enter text.
 (c) Other environmentally-sensitive species. Explain findings: Click here to enter text.
 (d) Aquatic/wildlife diversity. Explain findings: Click here to enter text.

2. Characteristics of wetlands adjacent to non-TNW that flow directly or indirectly into TNW
 (i) Physical Characteristics:
 (a) General Wetland Characteristics:
 Properties:
 Wetland size: # acres
 Wetland type. Explain: Click here to enter text.
 Wetland quality. Explain: Click here to enter text.
 Project wetlands cross or serve as state boundaries. Explain: Click here to enter text.
 (b) General Flow Relationship with Non-TNW:
 Flow is: Choose an item. Explain: Click here to enter text.
 Surface flow is: Choose an item.
 Characteristics: Click here to enter text.
 Subsurface flow: Choose an item. Explain findings: Click here to enter text.
 (ii) Dye (or other) test performed: Click here to enter text.
 (c) Wetland Adjacency Determination with Non-TNW:
 (i) Directly abutting
 (ii) Not directly abutting
 (a) Discrete wetland hydrologic connection. Explain: Click here to enter text.
 (b) Ecological connection. Explain: Click here to enter text.
 (c) Separated by bern/barrier. Explain: Click here to enter text.
 (d) Proximity (Relationship) to TNW
 Project wetlands are Choose an item. river miles from TNW.
 Project waters are Choose an item. aerial (straight) miles from TNW.
 Flow is from: Choose an item.
 Estimate approximate location of wetland as within the Choose an item. floodplain.

(ii) Chemical Characteristics:
 Characterize wetland system (e.g., water color is clear, brown, oil film on surface; water quality; general watershed characteristics; etc.). Explain: Click here to enter text.
 Identify specific pollutants, if known: Click here to enter text.

(iii) Biological Characteristics. Wetland supports (check all that apply):
 (i) Riparian buffer. Characteristics (type, average width); Click here to enter text.
 (ii) Vegetation type/percent cover. Explain: Click here to enter text.
 (iii) Habitat for:
 (a) Federally Listed species. Explain findings: Click here to enter text.
 (b) Fish/spawn areas. Explain findings: Click here to enter text.
 (c) Other environmentally-sensitive species. Explain findings: Click here to enter text.
 (d) Aquatic/wildlife diversity. Explain findings: Click here to enter text.

3. Characteristics of all wetlands adjacent to the tributary (if any)
 All wetland(s) being considered in the cumulative analysis: Choose an item.
 Approximately (ii) acres in total are being considered in the cumulative analysis.
For each wetland, specify the following:

<table>
<thead>
<tr>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
<th>Directly abuts? (Y/N)</th>
<th>Size (in acres)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y/N</td>
<td>#</td>
<td>Y/N</td>
<td>#</td>
</tr>
</tbody>
</table>

Summarize overall biological, chemical and physical functions being performed: [Click here to enter text.]

C. SIGNIFICANT NEXUS DETERMINATION

A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g., between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus.

Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos Guidance* and discussed in the Instructional Guidebook. Factors to consider include, for example:

- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW?
- Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs?
- Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW?

Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below:

1. **Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: [Click here to enter text.]

2. **Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: [Click here to enter text.]

3. **Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW.** Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: [Click here to enter text.]

D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY):

1. **TNWs and Adjacent Wetlands.** Check all that apply and provide size estimates in review area:

 - [] TNWs: # linear feet # width (ft), Or, # acres.
 - [] Wetlands adjacent to TNWs: # acres.

2. **RPWs that flow directly or indirectly into TNWs.**

 - [] Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: [Click here to enter text.]

 - [] Tributaries of TNW where tributaries have continuous flow “seasonally” (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: [Click here to enter text.]

 Provide estimates for jurisdictional waters in the review area (check all that apply):

 - [] Tributary waters: # linear feet # width (ft).
 - [] Other non-wetland waters: # acres.

 Identify type(s) of waters: [Click here to enter text.]
3. Non-RPWs\(^4\) that flow directly or indirectly into TNWs.
 - Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional waters within the review area (check all that apply):
 - Tributary waters: # linear feet # width (ft).
 - Other non-wetland waters: # acres.
 - Identify type(s) of waters: [Click here to enter text].

4. Wetlands directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands directly abutting an RPW and thus are jurisdictional as adjacent wetlands.
 - Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: [Click here to enter text].
 - Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: [Click here to enter text].

 Provide acreage estimates for jurisdictional wetlands in the review area: # acres.

5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs.
 - Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide acreage estimates for jurisdictional wetlands in the review area: # acres.

6. Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs.
 - Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C.

 Provide estimates for jurisdictional wetlands in the review area: # acres.

7. Impoundments of jurisdictional waters.\(^9\)
 As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional.
 - Demonstrate that impoundment was created from "waters of the U.S.," or
 - Demonstrate that water meets the criteria for one of the categories presented above (1-6), or
 - Demonstrate that water is isolated with a nexus to commerce (see E below).

E. ISOLATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATION OR DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK ALL THAT APPLY):\(^10\)

 - which are or could be used by interstate or foreign travelers for recreational or other purposes.
 - from which fish or shellfish are or could be taken and sold in interstate or foreign commerce.
 - which are or could be used for industrial purposes by industries in interstate commerce.
 - Interstate isolated waters. Explain: [Click here to enter text].
 - Other factors. Explain: [Click here to enter text].

 Identify water body and summarize rationale supporting determination: [Click here to enter text].

 Provide estimates for jurisdictional waters in the review area (check all that apply):
 - Tributary waters: # linear feet # width (ft).
 - Other non-wetland waters: # acres.
 - Identify type(s) of waters: [Click here to enter text].
 - Wetlands: # acres.

\(^4\)See Footnote # 3.

\(^9\) To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook.

\(^10\) Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos.
F. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY):

- If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements.
- Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce.
- Prior to the Jan 2001 Supreme Court decision in “SWANCC,” the review area would have been regulated based solely on the “Migratory Bird Rule” (MBR).
- Waters do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction. Explain: Click here to enter text.
- Other (explain, if not covered above): Man-made features created in uplands. 19 man-made drainage features totaling 5,761 linear feet were identified onsite within the boundaries of the project site. One open water, man-made pond (0.22 acres) was created in uplands draining only uplands. These features are man-made features constructed in uplands. They consist of grass waterways, road-side ditches, and drainage swales designed to transport water off the golf course. These features do not have perennial flow and are not considered “water’s of the U.S.”.

 Provide acreage estimates for non-jurisdictional waters in the review area, where the sole potential basis of jurisdiction is the MBR factors (i.e., presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment (check all that apply):
- Non-wetland waters (i.e., rivers, streams): # linear feet # width (ft).
- Lakes/ponds: # acres.
- Other non-wetland waters: # acres. List type of aquatic resource: Click here to enter text.
- Wetlands: # acres.

 Provide acreage estimates for non-jurisdictional waters in the review area that do not meet the “Significant Nexus” standard, where such a finding is required for jurisdiction (check all that apply):
- Non-wetland waters (i.e., rivers, streams): # linear feet # width (ft).
- Lakes/ponds: # acres.
- Other non-wetland waters: # acres. List type of aquatic resource: Click here to enter text.
- Wetlands: # acres.

SECTION IV: DATA SOURCES.

A. SUPPORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and requested, appropriately reference sources below):
- Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Waters Determination Report.
- Data sheets/prepared/submitted by or on behalf of the applicant/consultant.
 - Office concurs with data sheets/delineation report.
 - Office does not concur with data sheets/delineation report.
- Data sheets prepared by the Corps: Click here to enter text.
- Corps navigable waters’ study: Click here to enter text.
- U.S. Geological Survey Hydrologic Atlas: Click here to enter text.
- USGS NHD data.
- USGS 8 and 12 digit HUC maps.
- U.S. Geological Survey map(s). Cite scale & quad name: 1:24k, Odon Quad
- USDA Natural Resources Conservation Service Soil Survey. Citation: Click here to enter text.
- National wetlands inventory map(s). Cite name: Odon Quad
- State/Local wetland inventory map(s): Click here to enter text.
- FEMA/FIRM maps: Click here to enter text.
- 100-year Floodplain Elevation is: Click here to enter text. (National Geodetic Vertical Datum of 1929)
- Photographs: Aerial (Name & Date): Waters Determination Report
 or Other (Name & Date): Waters Determination Report
- Previous determination(s). File no. and date of response letter: Click here to enter text.
- Applicable/supporting case law: Click here to enter text.
- Applicable/supporting scientific literature: Click here to enter text.
- Other information (please specify): Click here to enter text.

B. ADDITIONAL COMMENTS TO SUPPORT JD: Click here to enter text.