APPROVED JURISDICTIONAL DETERMINATION FORM U.S. Army Corps of Engineers This form should be completed by following the instructions provided in Section IV of the JD Form Instructional Guidebook. ## SECTION I: BACKGROUND INFORMATION - REPORT COMPLETION DATE FOR APPROVED JURISDICTIONAL DETERMINATION (JD): November 18, 2015 - B. DISTRICT OFFICE, FILE NAME, AND NUMBER: Louisville District, Jurisdictional Determination Request, LRL-2015-787-pmh Isolated Pond with Wetland Fringe | С. | PRO | JECT LOCATION AND BACKGROUND INFORMATION: | |-------------|------------------------------|--| | | Cente
Name
Name | Indiana County: Clark City: Memphis or coordinates of site (lat/long in degree decimal format): Lat. 38.43663°, Long85.813314° of nearest waterbody: unnamed tributary to Muddy Fork of nearest Traditional Navigable Water (TNW) into which the aquatic resource flows: Muddy Fork of watershed or Hydrologic Unit Code (HUC): Silver-Little Kentucky 5140101 | | | V | Check if map/diagram of review area and/or potential jurisdictional areas is/are available upon request. | | | | Check if other sites (e.g., offsite mitigation sites, disposal sites, etc) are associated with this action and are recorded on a different JD form | | D. | REV | IEW PERFORMED FOR SITE EVALUATION (CHECK ALL THAT APPLY): | | | Г | Office (Desk) Determination. Date: | | | V | Field Determination. Date(s): November 3, 2015 | | SEC | CTION | VII: SUMMARY OF FINDINGS | | A. . | RHA S | SECTION 10 DETERMINATION OF JURISDICTION. | | | re are 1
1. [<i>Reqt</i> | no "navigable waters of the U.S." within Rivers and Harbors Act (RHA) jurisdiction (as defined by 33 CFR part 329) in the review uired] | | | | Waters subject to the ebb and flow of the tide. | | | Γ | Waters are presently used, or have been used in the past, or may be susceptible for use to transport interstate or foreign commerce. Explain: Click here to enter text. | | В. | CWA | SECTION 404 DETERMINATION OF JURISDICTION. | | The | re are i | no "waters of the U.S." within Clean Water Act (CWA) jurisdiction (as defined by 33 CFR part 328) in the review area. [Required] | | | | Vaters of the U.S. Indicate presence of waters of U.S. in review area (check all that apply): 1 | | | Γ | TNWs, including territorial seas | | | | Wetlands adjacent to TNWs | | | | Relatively permanent waters ² (RPWs) that flow directly or indirectly into TNWs | | | Г | Non-RPWs that flow directly or indirectly into TNWs | | | Г | Wetlands directly abutting RPWs that flow directly or indirectly into TNWs | | | Г | Wetlands adjacent to but not directly abutting RPWs that flow directly or indirectly into TNWs | | | | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs | | | | Impoundments of jurisdictional waters | | | | Isolated (interstate or intrastate) waters, including isolated wetlands | c. Limits (boundaries) of jurisdiction based on: Choose an item. b. Identify (estimate) size of waters of the U.S. in the review area: Non-wetland waters: # linear feet: # width (ft) and/or # acres. Elevation of established OHWM (if known): Click here to enter text. 2. Non-regulated waters/wetlands (check if applicable):3 Potentially jurisdictional waters and/or wetlands were assessed within the review area and determined to be not jurisdictional. Explain: Pond (0.66 acre PUB) and Wetland (0.40 acre PEM) do not possess any hydrological connection to waters of the U.S. and are not used or susceptible to use in the interstate or foreign commerce. As such, this pond and fringe wetland are considered isolated and not waters of the U.S. Wetlands: # acres. ¹ Boxes checked below shall be supported by completing the appropriate sections in Section III below. ² For purposes of this form, an RPW is defined as a tributary that is not a TNW and that typically flows year-round or has continuous flow at least "seasonally" (e.g., typically 3 months). ³ Supporting documentation is presented in Section III.F. ## **SECTION III: CWA ANALYSIS** ## A. TNWs AND WETLANDS ADJACENT TO TNWs The agencies will assert jurisdiction over TNWs and wetlands adjacent to TNWs. If the aquatic resource is a TNW, complete Section III.A.1 and Section III.D.1. only; if the aquatic resource is a wetland adjacent to a TNW, complete Sections III.A.1 and 2 and Section III.D.1.; otherwise, see Section III.B below. #### 1. TNW Identify TNW: Click here to enter text. Summarize rationale supporting determination: Click here to enter text. #### 2. Wetland adjacent to TNW Summarize rationale supporting conclusion that wetland is "adjacent": Click here to enter text. ## B. CHARACTERISTICS OF TRIBUTARY (THAT IS NOT A TNW) AND ITS ADJACENT WETLANDS (IF ANY); This section summarizes information regarding characteristics of the tributary and its adjacent wetlands, if any, and it helps determine whether or not the standards for jurisdiction established under *Rapanos* have been met. The agencies will assert jurisdiction over non-navigable tributaries of TNWs where the tributaries are "relatively permanent waters" (RPWs), i.e. tributaries that typically flow year-round or have continuous flow at least seasonally (e.g., typically 3 months). A wetland that directly abuts an RPW is also jurisdictional. If the aquatic resource is not a TNW, but has year-round (perennial) flow, skip to Section III.D.2. If the aquatic resource is a wetland directly abutting a tributary with perennial flow, skip to Section III.D.4. A wetland that is adjacent to but that does not directly abut an RPW requires a significant nexus evaluation. Corps districts and EPA regions will include in the record any available information that documents the existence of a significant nexus between a relatively permanent tributary that is not perennial (and its adjacent wetlands if any) and a traditional navigable water, even though a significant nexus finding is not required as a matter of law. If the waterbody⁴ is not an RPW, or a wetland directly abutting an RPW, a JD will require additional data to determine if the waterbody has a significant nexus with a TNW. If the tributary has adjacent wetlands, the significant nexus evaluation must consider the tributary in combination with all of its adjacent wetlands. This significant nexus evaluation that combines, for analytical purposes, the tributary and all of its adjacent wetlands is used whether the review area identified in the JD request is the tributary, or its adjacent wetlands, or both. If the JD covers a tributary with adjacent wetlands, complete Section III.B.1 for the tributary, Section III.B.2 for any onsite wetlands, and Section III.B.3 for all wetlands adjacent to that tributary, both onsite and offsite. The determination whether a significant nexus exists is determined in Section III.C below. ## 1. Characteristics of non-TNWs that flow directly or indirectly into TNW | (i) | (i) General Area Conditions: Watershed size: # Choose an item. Drainage area: # Choose an item. | | | | | | |------|---|--|--|--|--|--| | | | rage annual rainfa
rage annual snow | | | | | | (ii) | i) Physical Characteristics: (a) Relationship with TNW: Tributary flows directly into TNW. Tributary flows through Choose an item. tributaries before entering TNW. Project waters are Choose an item. river miles from TNW. Project waters are Choose an item. river miles from RPW. Project waters are Choose an item. aerial (straight) miles from TNW. Project waters are Choose an item. aerial (straight) miles from RPW. Project waters cross or serve as state boundaries. Explain: Click here to enter text. Identify flow route to TNW ⁵ : Click here to enter text. Tributary stream order, if known: Click here to enter text. | | | | | | | | (b) | · | Characteristics (check all that apply): Natural Artificial (man-made). Explain: Click here to enter text. Manipulated (man-altered). Explain: Click here to enter text. | | | | | | | | | | | | Average width: # feet Tributary properties with respect to top of bank (estimate): ⁴ Note that the Instructional Guidebook contains additional information regarding swales, ditches, washes, and erosional features generally and in the arid West. ⁵ Flow route can be described by identifying, e.g., tributary a, which flows through the review area, to flow into tributary b, which then flows into TNW. Jurisdictional Determination Request, LRL-2015-787-pmh Isolated Pond with Wetland Fringe | | | | | e depth: # feet
e side slopes: C | 'hoose a | n item. | | | · | | | |-------|-------|-----------------------|---------------|--|----------------------|--------------------------------------|----------|-----------------------|----------------------------|-----------|--| | | | Primary t | tribu | itary substrate | compos | sition (check a | all that | t appl | y): | | | | | | | Sil | ts | Γ | Sands | | | | | Concrete | | | | | Co | bbles | Г | Gravel | | | | Γ | Muck | | | | Γ | Ве | drock | Γ | Vegetation. | Туре | :/% c | over: Click | here to | o enter text. | | | | Г | Otl | her.Explain: C | lick here | e to enter text. | | | | | | | | | Presence
Tributary | of r | ndition/stability
run/riffle/pool cometry: <i>Choose</i>
adient (approxi | omple:
an item | xes. Explain: | Click i | ighin
here to | g banks].
9 enter text. | Explai | in: Click here to enter text. | | | (c) | Estimate Des | ave
crib | ovides for: Choo
rage number of
e flow regime:
ation on durati | f flow e
Click he | events in revie
ere to enter text | ·. | · | | an item, | | | | | Surface f | low | is: Choose an it | em. Ch | aracteristics: | Click I | iere to | enter text. | | | | | | | | low: <i>Choose an</i>
e (or other) tes | | | - | | | 2X1, | | | | | | Bed
OH | | ıll indic
ine imp | eators that app
pressed on the | | | = | | litter and debris | | | | 12 | | changes in the | charac | ter of soil | | | | | errestrial vegetation | | | | | | shelving | | | | | - | | wrack line | | | | | | vegetation ma | | | | Section 1 | sediment | sorting | g | | | | | | leaf litter distu
sediment depo | | r wasned awa | У | | scour
multiple | nheerw | ed or predicted flow events | | | | | | water staining | | | | | _ | | n plant community Click here to enter text. | | | | | | other (list): Cl | | to enter text. | | | p | | - Plant Collinaring | | | | | | scontinuous OF | | | ck here | to en | ter text. | | | | | | mount t | | er than the OH
gh Tide Line in | | | | | | | WA jurisdiction (check all that apply): Mark indicated by: | | | | | | oil or scum lin | | | | | | | ible datum; | | | | ſ | | fine shell or de | ebris de | posits (foresh | | | physical r | | | | | | ľ | - | physical mark | ings/ch | aracteristics | | | vegetation | n lines/ | changes in vegetation types. | | | | | | tidal gauges | | | | | | | | | | | i | . | other (list): Ch | ick here | to enter text. | | | | | | | (iii) | Chai | Explain: | ribu
Clici | | xt. | | | | film; wate | er quali | ity; general watershed characteristics, etc.). | | (iv) | Biole | ogical Ch | ara | cteristics. Cha | annel s | upports (che | ck all | that | apply): | | | | | Γ | Riparian | corr | ridor. Characte | ristics | (type, average | widtl | h): <i>Cl</i> | ick here to | enter te. | ext. | | | | Wetland | fring | ge. Characteris | stics: C | lick here to ente | er text. | | | | | | | Г | Habitat fo | or: | | | | | | | | | | | | Fede | erall | y Listed specie | s. Exp | lain findings: | Click . | here t | o enter text. | | | ⁶A natural or man-made discontinuity in the OHWM does not necessarily sever jurisdiction (e.g., where the stream temporarily flows underground, or where the OHWM has been removed by development or agricultural practices). Where there is a break in the OHWM that is unrelated to the waterbody's flow regime (e.g., flow over a rock outcrop or through a culvert), the agencies will look for indicators of flow above and below the break. ⁷Ibid. | | | | | Fish/s | pawn areas. I | Explain findings: Click here | to enter text. | | |----|-------|--------|---------|-------------------|------------------|---|--|--| | | | | Γ | Other | environment | ally-sensitive species. Exp | lain findings: Click here to enter text. | | | | | | Γ. | Aquat | tic/wildlife di | versity. Explain findings: | Click here to enter text. | | | 2. | Cha | aracto | eristi | cs of w | vetlands adja | cent to non-TNW that flo | ow directly or indirectly into TNW | ·
• | | | (i) | | | | cteristics: | | · | | | | () | | Gen | eral W | etland Charac | teristics: | | | | | | | | erties:
Wetlan | d size: # acres | , | | | | | | | | | | in: Click here to enter text. | | | | | | | | | | plain: Click here to enter text | | | | | | | | | | | Explain: Click here to enter text. | | | | | (b) | | | | n <mark>ip with Non-TNW</mark> :
Explain: <i>Click here to enter t</i> | ext. | | | | | | | | w is: Choose c | _ | | | | | | | (| Charac | teristics: Click | here to enter text. | | | | | | | | | | an item. Explain findings: | | | | | | | 1 | Dy | ye (or other) t | est performed: Click here to | enter text. | | | | | (c) | towns f | | | ermination with Non-TNW | <u>':</u> | | | | | | | | ctly abutting | | | | | | | | П | proces t | directly abutt | _ | Total to on the | | | | | | | | | · - | on. Explain: Click here to enter text. | | | | | | | | | connection. Explain: Click
y berm/barrier. Explain: C | | | | | | | _ | • | _ | - | HER HETE TO EMET TEXT. | | | | | (d) | | | (Relationship) | <u>) to TNW</u>
ose an item. river miles from | m TNW | | | | | | | | | an item. aerial (straight) m | | | | | | | | | m: Choose an | | . 4 21 | | | | 415 | CI. | | | | cation of wettand as within | the Choose an item. floodplain. | | | | (11) | | | | acteristics: | (e.g., water color is clear, h | orown, oil film on surface, water qua | ality; general watershed characteristics | | | | | etc.) | . Expl | ain: Click here | to enter text. | | inty, gonoral watershed onthecorpstice | | | | Iden | tify s | pecific | pollutants, if | known: Click here to enter to | ext. | | | | (iii) | | | | | Wetland supports (check | | | | | | | | | | cteristics (type, average wi | | | | | | | | | | t cover. Explain: Click here | e to enter text. | | | | | 1 | | bitat fo | | ecies. Explain findings; Cl. | | | | | | | | | | xplain findings; Click here . | | | | | | | | | | - | lain findings: Click here to enter text. | | | | | | | | | versity. Explain findings: (| | | | | | | | | | | | | | 3. | Cha | | | | | ljacent to the tributary (i
ed in the cumulative analy: | | | | | | | | | | tal are being considered in | | | | | | | | | d, specify the | | • | | | | | | Dire | ctly ab | uts? (Y/N) | Size (in acres) | Directly abuts? (Y/N) | Size (in acres) | | | | | | - | | | * | | | | | | Sum | marize | overall biolo | gical chemical and physic | al functions being performed: Click l | pere to enter text | ## C. SIGNIFICANT NEXUS DETERMINATION A significant nexus analysis will assess the flow characteristics and functions of the tributary itself and the functions performed by any wetlands adjacent to the tributary to determine if they significantly affect the chemical, physical, and biological integrity of a TNW. For each of the following situations, a significant nexus exists if the tributary, in combination with all of its adjacent wetlands, has more than a speculative or insubstantial effect on the chemical, physical and/or biological integrity of a TNW. Considerations when evaluating significant nexus include, but are not limited to the volume, duration, and frequency of the flow of water in the tributary and its proximity to a TNW, and the functions performed by the tributary and all its adjacent wetlands. It is not appropriate to determine significant nexus based solely on any specific threshold of distance (e.g. between a tributary and its adjacent wetland or between a tributary and the TNW). Similarly, the fact an adjacent wetland lies within or outside of a floodplain is not solely determinative of significant nexus. Draw connections between the features documented and the effects on the TNW, as identified in the *Rapanos* Guidance and discussed in the Instructional Guidebook, Factors to consider include, for example: - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to carry pollutants or flood waters to TNWs, or to reduce the amount of pollutants or flood waters reaching a TNW? - Does the tributary, in combination with its adjacent wetlands (if any), provide habitat and lifecycle support functions for fish and other species, such as feeding, nesting, spawning, or rearing young for species that are present in the TNW? - Does the tributary, in combination with its adjacent wetlands (if any), have the capacity to transfer nutrients and organic carbon that support downstream foodwebs? - Does the tributary, in combination with its adjacent wetlands (if any), have other relationships to the physical, chemical, or biological integrity of the TNW? Note: the above list of considerations is not inclusive and other functions observed or known to occur should be documented below: - 1. Significant nexus findings for non-RPW that has no adjacent wetlands and flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary itself, then go to Section III.D: Click here to enter text. - Significant nexus findings for non-RPW and its adjacent wetlands, where the non-RPW flows directly or indirectly into TNWs. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Click here to enter text. - 3. Significant nexus findings for wetlands adjacent to an RPW but that do not directly abut the RPW. Explain findings of presence or absence of significant nexus below, based on the tributary in combination with all of its adjacent wetlands, then go to Section III.D: Click here to enter text. # D. DETERMINATIONS OF JURISDICTIONAL FINDINGS. THE SUBJECT WATERS/WETLANDS ARE (CHECK ALL THAT APPLY): | | . 21). | |----|--| | 1. | TNWs and Adjacent Wetlands. Check all that apply and provide size estimates in review area: TNWs: # linear feet # width (ft), Or, # acres. Wetlands adjacent to TNWs: # acres. | | 2. | RPWs that flow directly or indirectly into TNWs. Tributaries of TNWs where tributaries typically flow year-round are jurisdictional. Provide data and rationale indicating that tributary is perennial: Click here to enter text Tributaries of TNW where tributaries have continuous flow "seasonally" (e.g., typically three months each year) are jurisdictional. Data supporting this conclusion is provided at Section III.B. Provide rationale indicating that tributary flows seasonally: Click here to enter text | | | Provide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: # linear feet # width (ft). Other non-wetland waters: # acres. Identify type(s) of waters: Click here to enter text. | | 3. | Non-RPWs ⁸ that flow directly or indirectly into TNWs. Waterbody that is not a TNW or an RPW, but flows directly or indirectly into a TNW, and it has a significant nexus with a TNW is jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | Provide estimates for jurisdictional waters within the review area (check all that apply): Tributary waters: # linear feet # width (ft). Other non-wetland waters: # acres. Identify type(s) of waters: Click here to enter text. | | 4. | Wetlands directly abutting an RPW that flow directly or indirectly into TNWs. Wetlands directly abut RPW and thus are jurisdictional as adjacent wetlands. Wetlands directly abutting an RPW where tributaries typically flow year-round. Provide data and rationale indicating that tributary is perennial in Section III.D.2, above. Provide rationale indicating that wetland is directly abutting an RPW: Click here to enter text. Wetlands directly abutting an RPW where tributaries typically flow "seasonally." Provide data indicating that tributary is seasonal in Section III.B and rationale in Section III.D.2, above. Provide rationale indicating that | | | wetland is directly abutting an RPW: Click here to enter text. Provide acreage estimates for jurisdictional wetlands in the review area: # acres. | | | | 5. Wetlands adjacent to but not directly abutting an RPW that flow directly or indirectly into TNWs. ⁸See Footnote # 3. | | | Wetlands that do not directly abut an RPW, but when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisidictional. Data supporting this conclusion is provided at Section III.C. | | |----|----------|---|-----| | | | Provide acreage estimates for jurisdictional wetlands in the review area: # acres. | | | | 6. | Wetlands adjacent to non-RPWs that flow directly or indirectly into TNWs. Wetlands adjacent to such waters, and have when considered in combination with the tributary to which they are adjacent and with similarly situated adjacent wetlands, have a significant nexus with a TNW are jurisdictional. Data supporting this conclusion is provided at Section III.C. | | | | | Provide estimates for jurisdictional wetlands in the review area: # acres. | | | | 7. | Impoundments of jurisdictional waters. ⁹ As a general rule, the impoundment of a jurisdictional tributary remains jurisdictional. Demonstrate that impoundment was created from "waters of the U.S.," or | | | | | Demonstrate that water meets the criteria for one of the categories presented above (1-6), or | | | | | Demonstrate that water is isolated with a nexus to commerce (see E below). | | | E. | OR
AL | LATED [INTERSTATE OR INTRA-STATE] WATERS, INCLUDING ISOLATED WETLANDS, THE USE, DEGRADATE DESTRUCTION OF WHICH COULD AFFECT INTERSTATE COMMERCE, INCLUDING ANY SUCH WATERS (CHECK THAT APPLY): 10 which are or could be used by interstate or foreign travelers for recreational or other purposes. | | | | | from which fish or shellfish are or could be taken and sold in interstate or foreign commerce. which are or could be used for industrial purposes by industries in interstate commerce. | | | | | Interstate isolated waters, Explain: Click here to enter text. | | | | Γİ | Other factors. Explain: Click here to enter text. | | | | • | | | | | | ntify water body and summarize rationale supporting determination: Click here to enter text. | | | | | vide estimates for jurisdictional waters in the review area (check all that apply): Tributary waters: # linear feet # width (ft). | | | | | Other non-wetland waters: # acres. | | | | | Identify type(s) of waters: Click here to enter text. | | | F. | The con- | Wetlands: # acres. NON-JURISDICTIONAL WATERS, INCLUDING WETLANDS (CHECK ALL THAT APPLY): If potential wetlands were assessed within the review area, these areas did not meet the criteria in the 1987 Corps of Engineers Wetland Delineation Manual and/or appropriate Regional Supplements. | | | | V | Review area included isolated waters with no substantial nexus to interstate (or foreign) commerce. | | | | | Prior to the Jan 2001 Supreme Court decision in "SWANCC," the review area would have been regulated based solely on the "Migratory Bird Rule" (MBR). | | | | Π | Waters do not meet the "Significant Nexus" standard, where such a finding is required for jurisdiction. Explain: Click here to enter te. | ΧÍ. | | | | Other: (explain, if not covered above): Click here to enter text. | | | | (i.e. | vide acreage estimates for non-jurisdictional waters in the review area, where the <u>sole</u> potential basis of jurisdiction is the MBR factors, presence of migratory birds, presence of endangered species, use of water for irrigated agriculture), using best professional judgment ck all that apply): | | | | | Non-wetland waters (i.e., rivers, streams): # linear feet # width (ft). | | | | V | Lakes/ponds: 0.66 acre PUB. | | | | | Other non-wetland waters: # acres. List type of aquatic resource: Click here to enter text | | | | V | Wetlands: 0.40 PEM | | | | | vide acreage estimates for non-jurisdictional waters in the review area that do not meet the "Significant Nexus" standard, where such a ing is required for jurisdiction (check all that apply): | l | | | | Non-wetland waters (i.e., rivers, streams): # linear feet # width (ft). | | | | | Lakes/ponds: # acres. | | | 1 | Γ | Other non-wetland waters: # acres. List type of aquatic resource: Click here to enter text. | | | | П | Wetlands: | | | | | | | ## SECTION IV: DATA SOURCES. ⁹ To complete the analysis refer to the key in Section III.D.6 of the Instructional Guidebook. ¹⁰ Prior to asserting or declining CWA jurisdiction based solely on this category, Corps Districts will elevate the action to Corps and EPA HQ for review consistent with the process described in the Corps/EPA Memorandum Regarding CWA Act Jurisdiction Following Rapanos. | A. | | PORTING DATA. Data reviewed for JD (check all that apply - checked items shall be included in case file and, where checked and | |----|-------|---| | | | sested, appropriately reference sources below): | | | - 1 | Maps, plans, plots or plat submitted by or on behalf of the applicant/consultant: Wetland Delineation Map | | | 14 | Data sheets prepared/submitted by or on behalf of the applicant/consultant. | | | | Office concurs with data sheets/delineation report on the Pond and Wetland. | | | | Office does not concur with data sheets/delineation report. | | | | Data sheets prepared by the Corps: Click here to enter text. | | | | Corps navigable waters' study: Click here to enter text. | | | 1 | U.S. Geological Survey Hydrologic Atlas: Click here to enter text. | | | | USGS NHD data. | | | | USGS 8 and 12 digit HUC maps. | | | 1 | U.S. Geological Survey map(s). Cite scale & quad name: Speed, IN 7.5 minute Quad | | | 1 | USDA Natural Resources Conservation Service Soil Survey. Citation: Clark County Indiana Soil Survey | | | V | National wetlands inventory map(s). Cite name: USFWS NWI Maps | | | | State/Local wetland inventory map(s): Click here to enter text. | | | [교 | FEMA/FIRM maps: FEMA Flood Zone Map | | | | 100-year Floodplain Elevation is: Click here to enter text. (National Geodectic Vertical Datum of 1929) | | | V | Photographs: Aerial (Name & Date): provided by applicant | | | Γİ | or 🔽 Other (Name & Date): Site photos by applicant | | | ri | Previous determination(s). File no. and date of response letter: Click here to enter text. | | | П | Applicable/supporting case law; Click here to enter text. | | | П | Applicable/supporting scientific literature: Click here to enter text. | | | П | Other information (please specify): Click here to enter text. | | | 7 - 1 | | | | | ITIONAL COMMENTS TO SUPPORT JD: In the review area, the pond and wetland exhibit no direct surface connection; are not to any water of the U.S.; and have no substantial nexus to interstate or foreign commerce. There is no connection with RPW or TNW. | | | | November 23, 2015 Date November 23, 2015 Date | | | | 11-23-15 | | | | |